Commit a2d49c88 authored by bryandlee's avatar bryandlee

init

parent 92a736d8
# animegan2-pytorch ### PyTorch Implementation of [AnimeGANv2](https://github.com/TachibanaYoshino/AnimeGANv2)
\ No newline at end of file
**Weight Conversion (Optional)**
```
git clone https://github.com/TachibanaYoshino/AnimeGANv2
python convert_weights.py
```
**Inference**
```
python test.py --input_dir [image_folder_path]
```
**Results from converted [[Paprika](https://drive.google.com/file/d/1K_xN32uoQKI8XmNYNLTX5gDn1UnQVe5I/view?usp=sharing)] style model**
(input image, original tensorflow result, pytorch result from left to right)
<img src="./samples/compare/1.jpg" width="650"> &nbsp;
<img src="./samples/compare/2.jpg" width="650"> &nbsp;
<img src="./samples/compare/3.jpg" width="650"> &nbsp;
**Note:** Training code not included / Results looks slightly blurrier than the original ones.
\ No newline at end of file
import argparse
import numpy as np
import os
import tensorflow as tf
from AnimeGANv2.net import generator as tf_generator
import torch
from model import Generator
def load_tf_weights(tf_path):
test_real = tf.placeholder(tf.float32, [1, None, None, 3], name='test')
with tf.variable_scope("generator", reuse=False):
test_generated = tf_generator.G_net(test_real).fake
saver = tf.train.Saver()
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, device_count = {'GPU': 0})) as sess:
ckpt = tf.train.get_checkpoint_state(tf_path)
assert ckpt is not None and ckpt.model_checkpoint_path is not None, f"Failed to load checkpoint {checkpoint_dir}"
saver.restore(sess, ckpt.model_checkpoint_path)
print(f"Tensorflow model checkpoint {ckpt.model_checkpoint_path} loaded")
tf_weights = {}
for v in tf.trainable_variables():
tf_weights[v.name] = v.eval()
return tf_weights
def convert_keys(k):
# 1. divide tf weight name in three parts [block_idx, layer_idx, weight/bias]
# 2. handle each part & merge into a pytorch model keys
k = k.replace("Conv/", "Conv_0/").replace("LayerNorm/", "LayerNorm_0/")
keys = k.split("/")[2:]
is_dconv = False
# handle C block..
if keys[0] == "C":
if keys[1] in ["Conv_1", "LayerNorm_1"]:
keys[1] = keys[1].replace("1", "5")
if len(keys) == 4:
assert "r" in keys[1]
if keys[1] == keys[2]:
is_dconv = True
keys[2] = "1.1"
block_c_maps = {
"1": "1.2",
"Conv_1": "2",
"2": "3",
}
if keys[2] in block_c_maps:
keys[2] = block_c_maps[keys[2]]
keys[1] = keys[1].replace("r", "") + ".layers." + keys[2]
keys[2] = keys[3]
keys.pop(-1)
assert len(keys) == 3
# handle output block
if "out" in keys[0]:
keys[1] = "0"
# first part
if keys[0] in ["A", "B", "C", "D", "E"]:
keys[0] = "block_" + keys[0].lower()
# second part
if "LayerNorm_" in keys[1]:
keys[1] = keys[1].replace("LayerNorm_", "") + ".2"
if "Conv_" in keys[1]:
keys[1] = keys[1].replace("Conv_", "") + ".1"
# third part
keys[2] = {
"weights:0": "weight",
"w:0": "weight",
"bias:0": "bias",
"gamma:0": "weight",
"beta:0": "bias",
}[keys[2]]
return ".".join(keys), is_dconv
def convert_and_save(tf_checkpoint_path, save_name):
tf_weights = load_tf_weights(tf_checkpoint_path)
torch_net = Generator()
torch_weights = torch_net.state_dict()
torch_converted_weights = {}
for k, v in tf_weights.items():
torch_k, is_dconv = convert_keys(k)
assert torch_k in torch_weights, f"weight name mismatch: {k}"
converted_weight = torch.from_numpy(v)
if len(converted_weight.shape) == 4:
if is_dconv:
converted_weight = converted_weight.permute(2, 3, 0, 1)
else:
converted_weight = converted_weight.permute(3, 2, 0, 1)
assert torch_weights[torch_k].shape == converted_weight.shape, f"shape mismatch: {k}"
torch_converted_weights[torch_k] = converted_weight
assert sorted(list(torch_converted_weights)) == sorted(list(torch_weights)), f"some weights are missing"
torch_net.load_state_dict(torch_converted_weights)
torch.save(torch_net.state_dict(), save_name)
print(f"PyTorch model saved at {save_name}")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--tf_checkpoint_path',
type=str,
default='AnimeGANv2/checkpoint/generator_Paprika_weight',
)
parser.add_argument(
'--save_name',
type=str,
default='pytorch_generator_Paprika.pt',
)
args = parser.parse_args()
convert_and_save(args.tf_checkpoint_path, args.save_name)
\ No newline at end of file
import torch
from torch import nn
import torch.nn.functional as F
class ConvNormLReLU(nn.Sequential):
def __init__(self, in_ch, out_ch, kernel_size=3, stride=1, padding=1, pad_mode="reflect", groups=1, bias=False):
pad_layer = {
"zero": nn.ZeroPad2d,
"same": nn.ReplicationPad2d,
"reflect": nn.ReflectionPad2d,
}
if pad_mode not in pad_layer:
raise NotImplementedError
super(ConvNormLReLU, self).__init__(
pad_layer[pad_mode](padding),
nn.Conv2d(in_ch, out_ch, kernel_size=kernel_size, stride=stride, padding=0, groups=groups, bias=bias),
nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True),
nn.LeakyReLU(0.2, inplace=True)
)
class InvertedResBlock(nn.Module):
def __init__(self, in_ch, out_ch, expansion_ratio=2):
super(InvertedResBlock, self).__init__()
self.use_res_connect = in_ch == out_ch
bottleneck = int(round(in_ch*expansion_ratio))
layers = []
if expansion_ratio != 1:
layers.append(ConvNormLReLU(in_ch, bottleneck, kernel_size=1, padding=0))
# dw
layers.append(ConvNormLReLU(bottleneck, bottleneck, groups=bottleneck, bias=True))
# pw
layers.append(nn.Conv2d(bottleneck, out_ch, kernel_size=1, padding=0, bias=False))
layers.append(nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True))
self.layers = nn.Sequential(*layers)
def forward(self, input):
out = self.layers(input)
if self.use_res_connect:
out = input + out
return out
class Generator(nn.Module):
def __init__(self, ):
super().__init__()
self.block_a = nn.Sequential(
ConvNormLReLU(3, 32, kernel_size=7, padding=3),
ConvNormLReLU(32, 64, stride=2, padding=(0,1,0,1)),
ConvNormLReLU(64, 64)
)
self.block_b = nn.Sequential(
ConvNormLReLU(64, 128, stride=2, padding=(0,1,0,1)),
ConvNormLReLU(128, 128)
)
self.block_c = nn.Sequential(
ConvNormLReLU(128, 128),
InvertedResBlock(128, 256, 2),
InvertedResBlock(256, 256, 2),
InvertedResBlock(256, 256, 2),
InvertedResBlock(256, 256, 2),
ConvNormLReLU(256, 128),
)
self.block_d = nn.Sequential(
ConvNormLReLU(128, 128),
ConvNormLReLU(128, 128)
)
self.block_e = nn.Sequential(
ConvNormLReLU(128, 64),
ConvNormLReLU(64, 64),
ConvNormLReLU(64, 32, kernel_size=7, padding=3)
)
self.out_layer = nn.Sequential(
nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0, bias=False),
nn.Tanh()
)
def forward(self, input):
out = self.block_a(input)
half_size = out.size()[-2:]
out = self.block_b(out)
out = self.block_c(out)
# out = F.interpolate(out, half_size, mode="bilinear", align_corners=True)
out = F.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False)
out = self.block_d(out)
# out = F.interpolate(out, input.size()[-2:], mode="bilinear", align_corners=True)
out = F.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False)
out = self.block_e(out)
out = self.out_layer(out)
return out
\ No newline at end of file
This diff is collapsed.
This diff is collapsed.
import argparse
import torch
import cv2
import numpy as np
import os
from model import Generator
torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def load_image(image_path):
img = cv2.imread(image_path).astype(np.float32)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
h, w = img.shape[:2]
def to_32s(x):
return 256 if x < 256 else x - x%32
img = cv2.resize(img, (to_32s(w), to_32s(h)))
img = torch.from_numpy(img)
img = img/127.5 - 1.0
return img
def test(args):
device = args.device
net = Generator()
net.load_state_dict(torch.load(args.checkpoint, map_location="cpu"))
net.to(device).eval()
print(f"model loaded: {args.checkpoint}")
os.makedirs(args.output_dir, exist_ok=True)
for image_name in sorted(os.listdir(args.input_dir)):
if os.path.splitext(image_name)[-1] not in [".jpg", ".png", ".bmp", ".tiff"]:
continue
image = load_image(os.path.join(args.input_dir, image_name))
with torch.no_grad():
input = image.permute(2, 0, 1).unsqueeze(0).to(device)
out = net(input).squeeze(0).permute(1, 2, 0).cpu().numpy()
out = (out + 1)*127.5
out = np.clip(out, 0, 255).astype(np.uint8)
cv2.imwrite(os.path.join(args.output_dir, image_name), cv2.cvtColor(out, cv2.COLOR_BGR2RGB))
print(f"image saved: {image_name}")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint',
type=str,
default='./pytorch_generator_Paprika.pt',
)
parser.add_argument(
'--input_dir',
type=str,
default='./samples/inputs',
)
parser.add_argument(
'--output_dir',
type=str,
default='./samples/results',
)
parser.add_argument(
'--device',
type=str,
default='cuda:0',
)
args = parser.parse_args()
test(args)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment